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Abstract

Problems in economy and �nance have attracted the interest of statistical physicists all over the
world. Fundamental problems pertain to the existence or not of long-, medium- or=and short-range
power-law correlations in various economic systems, to the presence of �nancial cycles and on
economic considerations, including economic policy. A method like the detrended uctuation
analysis is recalled emphasizing its value in sorting out correlation ranges, thereby leading to
predictability at short horizon. The (m; k)-Zipf method is presented for sorting out short-range
correlations in the sign and amplitude of the uctuations. A well-known �nancial analysis tech-
nique, the so-called moving average, is shown to raise questions to physicists about fractional
Brownian motion properties. Among spectacular results, the possibility of crash predictions has
been demonstrated through the log-periodicity of �nancial index oscillations. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

In this paper, as I did in the pertinent oral contribution, I intend to cover in a rather
practical way, or within a useful framework, numerical and theoretical investigations

( Performance results listed in the paper and in all marketing materials represent simulated computer results
over past historical data, and not the results of an actual account. Hypothetical or simulated performance
results have certain limitations. Unlike any actual performance record, simulated results do not represent
actual trading. Also, since the trades have not actually been executed, the results may have under-or-over
compensated for the impact, if any, of certain market factors, such as lack of liquidity. Simulated programs
in general are also subject to the fact that they are designed with the bene�t of hindsight. No representation is
being made that any account will or is likely to achieve pro�ts or losses similar to those shown. Testimonial
or actual account results presented do not necessarily reect the results of all users of the program. Past
performance does not guarantee future results.
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on �nancial applications of statistical physics as they have been covered up to this
date by the Li�ege group. Emphasis will be on outlining �ndings reported in previous
publications, and their related technique. No attempt is made to provide an extensive
review of the literature. In the spirit of the lectures as requested by the organizers, trans-
parence and pedagogy should hopefully be the main pillars of what follows. Moreover,
not all practical techniques will be covered. More speci�cally, the following contri-
bution is divided in four sections: (1) the detrended uctuation analysis method, (2)
the Zipf technique, (3) the moving-average (analysis) technique, (4) the log-periodic
time-series analysis near crashes. As in the oral lecture, the multifractal analysis tech-
nique is mentioned only when and if useful for the approaches and topics to which it
can be connected. The wavelet method [1] and the quasi-equilibrium thermodynamics
approach [2] are not touched upon here. Many interesting topics, basic and advanced
ones can be found in the recent book by Mantegna and Stanley [3].
As a preliminary statement let it be recalled that even though the error bar sizes are

not often mentioned, the author has much practice in critical exponent analysis and their
extraction from experimental data. He has shown persistency [4–9] in getting the best
technique available for sorting out numerical values. He is convinced that he cared as
much about the results from nonlinear �ts of �nancial time series, and subsequent data,
as he did in previous work on critical phase transitions, as e.g. in Refs. [4–9]. Moreover
even though not all analyzed data technique and results have been checked with respect
to standard physical signals (like fractional Brownian motion, white noise, etc.) most
results when published were thought to be su�ciently in agreement with what should
be thereby expected. Nevertheless, it is necessary to warn against mistreatment of
data, and as pointed out elsewhere [10], one can sometimes obtain quite varied mean
values, large error bars or even unreliable parameters. It is however extremely di�cult
to give general rules about how to be satis�ed with extracted data=parameter values
from nonlinear �t techniques. More sophisticated statistical techniques than I have used
or I am familiar with can surely be used with modern computers. However, there is no
strict need to request extreme precision from the technique due to the practical aspects
which are intended here and the obvious safety factors which have to be used in such
a risky subject indeed, i.e., applications of physical techniques and ideas to �nancial
data analysis for investment strategy purposes.

2. Detrended uctuation analysis technique

The detrended uctuation analysis (DFA) technique consists in dividing a time
series or random one-variable sequence y(t) of length N into N=� equal size nonover-
lapping boxes [11,12]. The variable t is discrete, evolves by a single unit at each
time step between t = 1 and N . No data point is supposed to be missing. In other
words, when applied to �nancial data, breaks due to holidays and week-ends are dis-
regarded. Nevertheless, the � units are said to be days in the following, a week has
often 5 days, and a year about 250 days. Thus let each box contain � points and N=�
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Fig. 1. Comparison of a 0:66 Hurst exponent fractional Brownian motion and the subsequent � value for a
DFA technique when the �-size boxes are overlapping (� = 0:6631) or not (� = 0:6593).

be an integer. The local trend in each �-size box is assumed to be linear, i.e., it is
taken as

z(t) = at + b : (1)

In each �-size box one next calculates the root-mean-square deviation between y(t)
and z(t). The detrended uctuation function F(�) is then calculated following

F2(�) =
1
�

(k+1)�∑
t=k�+1

|y(t)− z(t)|2; k = 0; 1; 2; : : : ;
(
N
�
− 1

)
: (2)

Averaging F2(�) over all N=� box sizes centered on time � gives the uctuations 〈F2(�)〉
as a function of �. The calculation is repeated for all possible di�erent values of �. A
power law behavior is expected as

〈F2(�)〉1=2 ∼ �� : (3)

An exponent � 6= 1
2 in a certain range of � values implies the existence of long-range

correlations in that time interval as in the fractional Brownian motion [13]. Such cor-
relations are said to be “persistent” or “antipersistent” when they correspond to �¿ 1

2
and �¡ 1

2 , respectively. The case of a fractional Brownian motion characterized by
an input Hurst exponent 1 Hu = 0:66 is shown in Fig. 1; in practice Hu = �. A
straight line can well �t the data between log � = 1 and 2.6. This interval is called
the scaling range. As should be expected � ' 0:66. Outside the scaling range the error

1 A brief discussion of the Hurst exponent and other usual exponents found in the text is given in Appendix.
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Table 1
Best �t exponent and scaling range of FEXC rate signals as obtained by
the DFA technique (non-overlapping boxes)

FEXC � Scaling range Crossover
(Weeks)

USD=DEM 0:55 1–50 —
GBP=DEM 0:55 1–62 —
JPY=USD 0:55 1–101 —
USD=CAD 0:50 1–32 —
NLG=BEF 0:26 1–10 yesa

DEM=BEF 0:23 1–6 yesa

DKK=BEF 0:31 1–7 yesa

DEM=JPY 0:53 1–204 —
DEM=CHF 0:51 1–204 —
DEM=DKK 0:48 1–66 —
FRF=BEF 0:37 1–46 —
BLG=DEM 0:47 1–4 —
PLN=BEF 0:33 1–20 —
a“yes” indicates a crossover to Brownian motion (� = 0:50) at large �.

bars are larger due to so-called �nite size e�ects, and=or the lack of numerous data
points.
Most of the time, for the foreign exchange currency (FEXC) rates that we have

examined [14,15], the scaling range is well de�ned (Table 1). Sometimes it readily
appears that the data contain two sets of points which can be �tted by straight lines.
Usually that describing the “large �” data has a 0.50 slope. Such crossovers from
fractional to ordinary Brownian motion are well observed. These crossovers suggest that
correlated sequences have characteristic durations with well-de�ned lower and upper
scales [14]. The speci�c � values can be thought to be related to political and economic
conditions. The persistence is related to free market (and “runaway”) conditions while
the antipersistence develops due to strict political control allowing for a �nite size
bracket in which the FEXC rates can uctuate. The case �=0:50 is surely avoided by
speculators.
The case of overlapping boxes has been recently examined and the result shown in

Fig. 1 for the above Hu = 0:66 case. To consider overlapping boxes might be useful
when not many data points are available. However, it was feared that extra insidious
correlations would thereby be inserted. Nevertheless, the analysis has shown that the
value of � is rather insensitive to the way boxes are used. For example, in Fig. 1,
the value of � is found to be ca. 0.66 whatever the overlapping condition, – the
di�erence between values being quite small, i.e., about 0.6%.
A cubic trend, like

z(t) = ct3 + dt2 + et + f ; (4)

can be also considered [16]. The parameters a to f are similarly estimated through a
best least-square �t of the data points in each box. Following the procedure described
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above the value of the exponent � can be obtained. Again the di�erence is found to
be very small.
The interesting observation that coding and non-coding sequences in DNA could be

sorted out by looking at a local � value [11,12] prompted us into observing whether
a local � could be de�ned and searched for in the same way in �nancial data series
[14–16]. This should allow one to probe the existence or not of locally correlated or
decorrelated sequences. This has also been done for liquid water content and brightness
temperature of stratus clouds [17]. In the DNA case, the � exponent drops below 1

2 in
the so-called non-coding regions. The exponent � jumps from much below 1

2 to about
1
2 when the clouds are breaking apart, and later drops back to a low value ... since
there is no water or cloud surface temperature uctuation anymore.
In order to observe the local correlations, a local observation box of a given �nite

size is constructed. Its size depends on the upper value of � for which a reasonable
power law exponent is found. It is chosen to be large enough in order to obtain a
su�ciently large number of data points. The local exponent � is then calculated for
the data contained in that �nite size box, as above. Thereafter the box is moved along
the time axis by an arbitrary �nite number of points (say, corresponding to 20 days),
depending on the intended strategy. The local � exponent can be displayed, e.g. for
a Brownian motion long series as in Fig. 2. The DFA technique leads to an � value
equal to 0.52, indicating the size of the error bar in such a procedure. The local �
exponent in the displayed region varies between 0.47 and 0.55. Clearly, the local �
exponent seems rougher, and varies with time around the overall (mean) � value.
The variation depends on the box size. In Figs. 3–5, three typical FEXC rate time
dependences, i.e., DEM=JPY , DEM=CHF , and DEM=DKK are shown for various time
intervals. The � value is indicated with the scaling range. The local � value is shown
as well for the latest years. For example, the DEM=JPY local � is consistently above
0.50 indicating a persistent evolution. A positive uctuation is likely to be followed by
another positive one. The case of DEM=CHF is typically Brownian with uctuations
around 0.50. However, in 1994 some drift is observed toward a value ca. 0.55 while
in 1997–1998 some drift is observed toward a value ca. 0.45. It is clear that some
economic or FEXC policy change occurred in 1994, and a drastic one at the end
of 1998 in order to render the system more Brownian-like. The same is true for the
DEM=DKK where, due to European economic policy, the spread in this exchange rate
was changed several times, leading from a Brownian-like situation to a nowadays
antipersistent behavior, i.e., a positive uctuation is followed by a negative one, and
conversely, such that local � is becoming pretty low these days.
Therefore, it can be claimed that this procedure interestingly leads to a local mea-

surement of the degree of long-range correlations, thus of local persistence or not.
In previous investigations [14], it has been found on thorough investigations of the
GBL=DEM exchange rate data that the change in slope of local � vs. time corresponded
to changes in the Bundesbank interest rate increase or decrease. However mere mil-
itary events or political ones or others, like the Gulf War or Spanish nurses strikes,
were somewhat irrelevant. The 1985 Plaza agreement though had some inuence in
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Fig. 2. The DFA technique result for the local � exponent of a (fractional) Brownian motion signal (Hu=0:5)
in a restricted region of a long (16 834 data points) series following the method not taking into account the
overlap of analyzing boxes; box size: 400 points.

order to curb the runaway local � value from a persistent 0.60 back to a more 0.50
Brownian-like value. Thus, FEXC rate behaviors indicate as for DNA and clouds that
local � is a measure of information, an entropy variation indicating how (whatever)
“information” is managed by the system, how fractional Brownian motion uctuation
processes stabilize (or not) a system. This seems to be an “information” to be taken
into account when developing Hamiltonian or thermodynamic-like models.
Since local correlations can be sorted out, a strategy for pro�t making can be de-

veloped. It is easily observed whether there is persistency or antipersistency in some
exchange rate, – according to the local value of �. Thus, some guess whether the next
uctuation should be positive or negative can be made. Therefore a buy or sell decision
can be taken. In so doing and taking the example of (DEM=BEF), we performed some
virtual game and implemented the most simple strategy [18]. It can be shown that
this technique leads to predictability and therefore �nancial gains on foreign exchange
currency and other markets, – at least in the limit of zero fee constraint.
Starting with one (normalized) unit, assuming no fee (= playing as a banker),

we have calculated the immediate daily compounded return. The capital gain over a
16-year period for the DEM=USD and DEM=BEF , starting on January 01, 1980 till
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Fig. 3. Top of �gure: variation of the DEM=JPY exchange rate from January 1, 1970 to December 31, 1999.
Central part: Hurst exponent or � value from the DFA technique when the �-size boxes are not overlapping
(� = 0:53); scaling range: 1–204 weeks; � in days. Bottom of �gure: The DFA local � exponent technique
result (non-overlapping boxes) for the latest thirteen years.

Fig. 4. Top of �gure: variation of the DEM=CHF exchange rate from January 01, 1970 till December 31,
1999. Central part: Hurst exponent or � value from the DFA technique when the �-size boxes are not
overlapping (�=0:51); scaling range: 1–204 weeks; � in days. Bottom of �gure: The DFA local � exponent
technique result (non-overlapping boxes) for the latest thirteen years.
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Fig. 5. Top of �gure: variation of the DEM=DKK exchange rate from January 1, 1991 to December 31,
1999 (incorrectly labelled inset). Central part: Hurst exponent or � value for the same DEM=DKK (in-
correctly labelled inset) time interval from the DFA technique when the �-size boxes are not overlapping
(� = 0:48); scaling range: 1–66 weeks; � in days. Bottom of �gure: The DFA local � exponent technique
result (non-overlapping boxes) for the latest �ve years. Note: 0:265 DEM ' 1:00 DKK on January 01, 2000.

October 15, 1996 has been calculated thus for a N = 4200 set of data points [18],
taking as data input the value of the rate at closure in London. When local � was
close to 1

2 no guess was made, i.e., for 2210 data points. All guesses on the “next
daily uctuation” were correct. It is of interest to know that bad=good guesses were in
the ratio 756=1234.

3. Zipf analysis technique

The above (DFA) technique considers the sign of the uctuations and their persis-
tence, but it falls short of implementing some strategy taking into account the amplitude
of the uctuations. Another type of analysis bringing information on coherence is based
on the so-called Zipf analysis as applied to signals or “texts” [19]. This technique, orig-
inally introduced in the context of natural languages is performed by calculating the
frequency of occurrence f of each word in a given text. By sorting out the words
according to their frequency, a rank R can be assigned to each word, with R = 1 for
the most frequent one. A power law

f ∼ R−� (5)

is expected [19] to be due to the hierarchical structure of the text as well as the
presence of long-range correlations (sentences, and logical structures therein).
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Table 2
Number of possible words of length m for an alphabet
with k characters

m \ k 2 3 4

2 4 9 16
3 8 27 64
4 16 51 256
5 32 153 —
6 61 459 —

A simple extension of the Zipf analysis is to consider m-letter words, i.e., the words
strictly made of m characters without considering the white spaces. The available num-
ber of di�erent letters or characters k in the alphabet should also be speci�ed. The
number of words for a given alphabet with a certain number of characters is given
in Table 2. A power law in f(R) is expected to be observed in correlated sequences
[20,21]. There is no theory at this time predicting the exponent as a function of (m; k).
It has been shown in previous work [20] that the technique is rather weak for a

predictability purpose when only two characters and short words are considered [20].
Notice that in this approximation (k = 2) the signal is like a text, say written with d
and u letters, translated into a S =±1 Ising spin chain. An increase in the number of
allowed characters for the alphabet allows one to consider di�erent size and signs of
the uctuations, i.e., huge, marginal and small (positive or negative) uctuations can
be considered. The “too small” uctuations, i.e., of weak interest for speculators, can
be eliminated of consideration by introducing a threshold on the signal amplitude size.
After having decided on the number (k) of characters (or Ising spin values) of the

alphabet, the signal can be transformed into a text (or Ising chain), and thereafter
analyzed with respect to the frequency of words of a given size (m) to be ranked
accordingly. In our work, words of equal lengths were always considered. The words
can be ranked according to their frequency and a power law (or not) observed on a
log–log plot.
The above procedure does not take into account the trend. For a positive (or negative)

trend over the time box which is investigated, a bias can occur between words. For
a two-character alphabet, e.g. u and d, the frequency f of u’s, i.e., pu can be larger
(smaller) than the frequency of d’s, i.e., pd. Such a bias can be taken into account with
respect to the equal probability occurrence, e.g. �=pu−0:5=pd +0:5. A new ranking
procedure can be performed by de�ning the ratio of the observed frequency of a word
divided by the theoretical frequency of occurrence of a word, assuming independence
of characters. E.g. if the word uud occurs, say, puud times, since the independence of
characters would imply that the word would occur pupupd times, a relative frequency
f=f′ can be de�ned as puud=(pupupd). A new ranking can be made. It can be quite
di�erent (Table 3) from the previous one. In so doing a new power-law exponent �
can be looked for.
A variant consists in comparing on a histogram [21] or on a normal–normal plot, the

observed word occurrence probabilities vs. the theoretically expected ones, in absence
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Table 3
Rank R of words of size m= 4 for a k = 2 character alphabet for the Apple share value “signal” translated
into a “text”, taken at closing between January 01, 1987 and December 31, 1997a

R f Text f′ f=f′ R′

1 0.082478 dddd 0.092375 0.89286 15
2 0.080424 dddu 0.075183 1.0697 3
3 0.080424 uddd 0.075183 1.0697 3
4 0.076660 dudd 0.075183 1.0196 8
5 0.073580 ddud 0.075183 0.97868 10
6 0.070157 dduu 0.061191 1.1465 1
7 0.067077 uudd 0.061191 1.0962 2
8 0.063313 uddu 0.061191 1.0347 7
9 0.061259 duud 0.061191 1.0011 9
10 0.057837 udud 0.061191 0.94519 12
11 0.054757 dudu 0.061191 0.89485 14
12 0.052019 uuud 0.049803 1.0445 5
13 0.051677 duuu 0.049803 1.0376 6
14 0.045859 uudu 0.049803 0.92081 13
15 0.042779 uduu 0.049803 0.85896 16
16 0.038672 uuuu 0.040534 0.95406 11
af is the observed word frequency; f′ is the theoretical frequency taking into account the bias (�) which
is here −0:0513; due to the rescaling f=f′ the words take a new rank R′.

or in presence of trend. This has been implemented in order to show the domino e�ect
at market crashes [22].
Another variant consists in ranking the words according to their relative frequency

and relative (“normalized”) rank taking into account for the normalization the prob-
ability fM of the most often occurring word [21]. Indeed for m and k large not all
words do occur. Even though, e.g. for the (m = 6, k = 2) case there are 64 possible
words, and the maximum rank is RM = 64, the frequency of the most often observed
word is unknown. Thus a plot f=fM vs. RM=R will be di�erent from f vs. R, leading
to a di�erent � exponent.
In conclusion of this section, it is clear that di�erent strategies following the Zipf

analysis technique can be implemented, according to the following factors: the (m; k)
values, how the trend is eliminated (or not) and how the ranks and frequencies of
occurrence are de�ned.

4. Moving-average analysis technique

Stock market indices have often appeared to be cyclical. In recent years, some less
trivially deterministic content has been looked for as hidden in some characteristic
noise parameter, e.g. the fractal dimension of the “signal”. The fractal dimension D
is related to Hu, – see the appendix. We have discovered that a very usual technique
used by chartists and analysts, known as the moving-average analysis (MAA) technique,
contains an interesting way for determining Hu for a y(t) signal [23].
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The moving average �y is de�ned as

�y(t) =
1
N

N−1∑
i=0

y(t − i) ; (6)

i.e., the average of y for the last N data points. It is recommended to consider the
value of �y as de�ned at the end of the examined interval. One can easily show that if y
increases (resp. decreases) with time, �y¡y (resp. �y¿y). Thus, the moving average
captures the trend of the signal over the considered time interval N .
Let two moving averages �y1 and �y2 be calculated, respectively, over e.g. T1 and T2

intervals such that T2¿T1. If y(t) increases for a long period before decreasing rapidly,
�y1 will cross �y2 from above. In empirical �nance this event is called a death cross
because the signal measured on a short-time interval decreases faster than the overall
trend, as measure by the average in the longer interval [23]. This leads to pessimism
concerning the behavior of the signal which should later hit some minimum. On the
contrary, if �y1 crosses �y2 from below, the crossing point coincides with an upsurge of
the signal y(t), – such a crossing is called a gold cross by optimism; it occurs before
a maximum. The density � of crossing points between any two moving averages is
obviously a measure of long-range power-law correlations in the signal.
It has been checked [24] that the density � of crossing points between �y1 and �y2

curves is homogeneous along fractional Brownian motion signals, whence it is not
a Cantor set [13]. In fact, the fractal dimension D of the set of crossing points is
trivially one. This suggests a lack of robustness, when forecast from gold and death
cross distribution is made and this enables to work out the investing strategy.
However the density of crossing points �(�T ), where �T = (T2 − T1)=T2, is fully

symmetric, has a minimum [24] in the middle of the �T interval and diverges for
�T = 0 and for �T = 1, with an exponent which is the Hurst exponent. This result
certainly raises fundamental questions on the properties of (fractional or not) Brownian
motion processes. The behavior of � is analogous to the density of electronic states on a
fractal lattice in a tight-binding approximation [25,26]. Notice that the moving-average
method can serve to measure the Hurst exponent in a very fast, elegant and continuous
way.
Investment strategies should look for Hu values over di�erent time interval windows

which are continuously shifted. In this respect, connection to multifractal analysis 2 can
be made [29,30]. This corresponds to obtaining a spectrum of moving averages indeed
[24]. Notice that a DFA and a multifractal analysis cost much more CPU time than a

2 The technique consists in calculating the so-called “qth-order height–height correlation function” [27,28]

cq(�) = 〈|y(t)− y(t′)|q〉� ; (7)

where only non-zero terms are considered in the average 〈: : :〉� taken over all couples (t; t′) such that
� = |t − t′|. The correlation function c(�) is supposed to behave like

c1(�) = 〈|y(t)− y(t′)|〉� ∼ �H1 ; (8)

where H1 is the Hu exponent.
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Fig. 6. The Hurst exponent for various fractional Brownian motion signals as measured by the detrended
uctuation analysis (DFA), moving average analysis (MAA) and multi-fractal analysis (MFA) methods.

moving-average method due to multiple loops which are present in the DFA and cq
algorithms. The precision of the results is however quite similar, as shown in Fig. 6,
gathering results from Refs. [14,24,29,31].
The technique has been used in order to analyze di�erent signals [32]. It is re-

commended to look at results on the http:==www:supras:phys:ulg:ac:be=statphys=
statphys:html web site where colorful diagrams can be downloaded for di�erent phys-
ical and �nancial time series.

5. Log-periodic �nancial index oscillation analysis technique

Among spectacular applications of statistical physics to the forecasting of stock mar-
kets is the �nding of the possibility to predict crashes. This was �rst proposed in
two independent works [33,34], though some authors are discontent with such a pre-
dictability [35,36]. It is proposed that the economic index y(t) is similar to some
thermodynamic property near a critical point, i.e.,

y(t) = A+ B(tc − t)m[1 + C cos(! ln(tc − t) + �)] (9)

for t ¡ tc, where tc is the crash-time, rupture or critical point, A; B; m; C; !; � are pa-
rameters. This index is �nite at t= tc if m¿ 0, and it diverges if m¡ 0. On such laws,
log-periodic oscillations are superposed [33,34,37–39]. The period of these oscillations
converges to the rupture point as well. The law generalizes the scaleless situation of
ordinary critical points to cases in which a discrete scale invariance [40] exists, i.e., to
complex critical exponents of the form m+i! [41]. This type of behavior was already
proposed in order to �t experimental measurements of sound wave rate emissions prior
to the rupture of heterogeneous composite stressed up to failure [42] and has been
reported in biased di�usion on random lattices [43] and in sandpile avalanche studies
on quasi-fractal bases [44].
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It has appeared that the value of m is not robust in the non-linear �ts. Thus, we
have proposed to consider a logarithmic divergence, corresponding to the m= 0 limit,
[37] rather than a power law, i.e.,

y(t) = A+ B ln
(
tc − t
tc

)[
1 + C sin

(
! ln

(
tc − t
tc

)
+ �

)]
for t ¡ tc : (10)

In so doing the analysis of (closing value) stock market index like the Dow Jones
industrial average (DJIA), the S&P 500 [37,38] and DAX [39] leads to observe the
precursor of so-called crashes. This was shown on October 1987 and October 1997
cases, as it has been reported in the �nancial press in due time [45,46]. The prediction
of the crash date was made as early as July, in the 1997 case. The error bar was
subsequently reduced following further data acquisition, and the crash was predicted
on October 24, 1997 to occur during the following week. It was remarkable that it
occurred on the next open day, i.e., Monday, October 27, but the more so that the
prediction could be made two months in advance.
The technique consists in �tting equally well the signal with the logarithmic law,

with 3 free parameters, and to observe the departure from the general trend. The best
is to do a non-linear �t, as for phase transition critical exponent search [1–5], and
to search for the best estimates of the A; B; tdivc [47]. An independent non-linear �t
is made on the oscillations, and a second rupture point toscc is estimated by selecting
the successive maxima and the minima of the oscillations. The best parameters are
obtained when an “identical” (within error bars) tc exists. It is best found from the
relation

tn+1 − tn
tn − tn−1 =

1
�
; (11)

where � = exp(!=2�) and tn−1, tn, tn+1 are the successive converging maxima (resp.
minima). After estimating � the rupture point toscc is found from

toscc =
tn − tn+1=�
1− 1

�

: (12)

Another more visual method consists in constructing the envelope of the index y: the
upper envelope ymax and the lower one ymin. The former represents the maximum of
y in an interval [ti; t] and the latter is the minimum of y in an interval [t; tf]. A
pattern is observed to be made of a succession of peaks which seem to aggregate
on each other at the crash time. It is recommended to look at results on the http :
==www:supras:phys:ulg:ac:be=statphys=statphys:html web site.
The parameter values have been published, i.e., the � and toscc values obtained for

the DJIA and S&P 500 are given in Table 1 of Ref. [37] for both 1980–1987 and
1990–1997 periods. We have stressed that the value of � seems to be universal in the
sense that the rate of the convergence is always in the range 2.3–2.5. This seems to be
related to a hidden (up to now) underlying (discrete scale) structure of the signal. In
Ref. [48], the authors predicted != 2�=ln � ∼ 9:06 for �= 2 value, for the density of
states singularity of random system Hamiltonians. For the DJIA and S&P 500, our �ts
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[37] give an ! value of the order of [6.71,7.54]. This corresponds to a � value ∼ 2:5.
Together with the spectral dimension ∼ 2(m + 1), ! allows to determine the scaling
factor of the number of degrees of freedom as well as the fractal dimension of the
underlying space [48]. It can be conjectured that stock markets are hierarchical objects
where each level has a di�erent weight and a di�erent characteristics time scale (the
horizons of the investors). The hierarchical lattice might be a fractal tree [38] with
loops. The geometry might control the type of criticality. This again seems relevant
for implementing models and strategies and give new opportunities for physicists to
study phase transitions on non-trivial lattices.

6. Conclusion

There is much data available in �nance literature, from banks and markets, about
costs, stocks and currency exchange rates or option values, on futures, discount and
interest rates, : : : the more so with the advent of the web. There are many levels of
observation: individual income(s), individual expenses, checking accounts and savings,
number of public or private accounts, volumes, debts and credits, tellers, dealers, bank
outlets, businesses, governments, so many, that one is immediately tempted to play
statistics. Fortunately, physicists have learned to develop intuition �rst during their
studies and when doing some research. They can build models. However, these cannot
be realistic if they do not reproduce experimental data. The above techniques have
been described in order to give some insight into a few which can lead to �ne anal-
ysis in order to obtain reliable values of characteristic parameters for physicists, those
pertaining to the realm of power-law exponents. Later, physicists knowing the limits
of their models and of their understanding will be honestly questioning at all levels
their �ndings. At this time it is already possible to bring to Economy and in particular
to Finance Theory a paraphernalia of tricks, theoretical or experimental ones.
Words like coherence e�ects, correlation lengths, relaxation times, many body inter-

actions, grand canonical ensembles, spins, phase transitions, critical exponents, mean
�eld approximations, renormalization group, cellular automata, organized criticality,..
are available for wrapping our gifts to business people. Moreover the techniques can
be already implemented for personal investment, either with winning strategy or simply
playing games with pocket money. Predictability models will not be found in a crystal
ball but rather from models derived from spin glasses or sandpile avalanches and after
using time-series analysis techniques as the ones here above.
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Appendix

A warning is in order on the meaning of the above power-law exponents. Mathe-
matically, they arise from speci�c mathematical tools and de�nitions, physically they
represent di�erent laws. It is not obvious that because two exponents can be related in
the same way to, say, the fractal dimension or another that both exponents represent
the same physical aspects of a signal. It seems pedagogically worthwhile to briey
review the most often used exponents and their meaning.
Both classic examples of a univariate stochastic time series are the Brownian motion

(Bm) and the L�evy walk (Lw) cases [13]. In both cases, the power spectral density
S(f) of the time series has a power-law dependence on the frequency f [49]:

S(f ) ∼ f−� : (A.1)

This formula allows one to put them into the self-a�ne class of phenomena. A cru-
cial step is to examine the e�ect of noise in the data, i.e., to extract deterministic or
stochastic components [50]. The stochastic aspects are found in the statistical distri-
bution of values and its persistence. This is factually found to be either non-existent
(white noise case) or if existent, to be strong or weak then. The correlations between
events can be on a short or long range, and thereby so is the persistence strength.
This is checked through the autocorrelation function. The larger the autocorrelation is
at some t, the stronger is said to be the persistence, otherwise it is “weak”. The value
of t implies long- or short (time)-range persuasions, – with respect to the sampling
frequency inverse. Moreover, the value of � in Eq. (A.1) is valid only for a given
range of the persistence in the time series. A Brownian motion is characterized by
� = 2, and a white noise by � = 0.
Notice that the di�erences between adjacent values of a Brownian motion amplitude

result in white noise. The Hurst Hu exponent of a signal results from the “rescale
range theory” (of Hurst [13,51,52]) and was �rst scienti�cally used to measure the Nile
ooding and drought amplitudes. The Hurst method consists in listing the di�erences
between the observed value at a discrete time n over an interval with size N on which
the mean has been taken. The upper (yM ) and lower (ym) values in that interval de�ne
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the range RN = yM − ym. The “rescale range” RN =SN is expected to behave like NHu.
This means that for a (discrete) self-a�ne signal y(n), the neighborhood of a particular
point on the signal can be rescaled by a factor b using the roughness (or Hurst [53,54])
exponent Hu and de�ning the new signal b−Huy(bn). For the exponent value Hu, the
frequency dependence of the signal so obtained should be undistinguishable from the
original one, i.e.,

y(n) ∼ b−Huy(bt) : (A.2)

An exponent Hu¡ 1
2 implies an antipersistent behavior while Hu¿

1
2 means a so-called

persistent signal [13].
The simple Brownian motion is characterized by Hu= 1

2 and white noise by Hu=0
[13]. This seems to imply that

� = 2Hu− 1 : (A.3)

Since a white noise is a truly random process, it can be concluded that Hu=0:5 implies
an uncorrelated time series, whence Hu¡ 0:5 implies antipersistence and Hu¿ 0:5
implies persistence. However, from preimposed Hu values of a fractional Brownian
motion series it is found that the equality (A.2) holds true in a very limited range and
� only slowly converges toward the value Hu.
The above results have been compared with those obtained from a detrended uc-

tuation analysis [14,16]. From the main text, it is expected that

〈F2〉1=2 ∼ tHa : (A.4)

The exponent Ha (called � in the main text) is o�cially called the Hausdor� expo-
nent [13,54]. This exponent is sometimes called the Hurst exponent. This exponent is
sometimes called the Holder exponent [55] as well. It is expected that

Ha= 2− D ; (A.5)

where D is the self-a�ne fractal dimension [13,56]. For Brownian motion, Ha = 0:5
and D=1:5, while for white noise Ha=0 and D=2. A comparison of such exponents
and their implication on the notion of “persistence” is given in Table 4.
The Zipf analysis as applied to signals or “texts” [19] as described here above leads

to a power-law expectation

f ∼ R−� : (A.6)

This is due to the hierarchical structure of the text as well as the presence of long-range
correlations (sentences, and logical structures therein). A conjecture

�= |2Hu− 1| (A.7)

has been proposed [57,58]. However, it seems that the relationship is not perfectly ful-
�lled. I conjecture here that the relationship holds if and only if the signal is stationary.
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Table 4
Values of the most relevant exponents in various regimes (i.e., stationary, persistent, antipersistent)
of univariate stochastic seriesa

Name of the D Ha Hu � � Ha
signal

— — — 0 — −1 —
— — — — antipersist — station
— — — 0.5 0.5 0 uncorrrel
— — — — persist — station
WN 2 0 1 − 1 —
(f)Bm — — — superpers — nonstat
Bm 3

2 0.5 3
2 — 2 —

(f)Bm — 0 1 — 1 —
at 1 1 2 superpers 3 —
aD: fractal dimension; Ha: Hausdor� measure; Hu: Hurst exponent; �: from DFA technique; �: power
spectrum exponent; WN=white noise; (f )Bm: (fractional) Brownian motion; at: at spectrum.
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