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Abstract

A common method in technical analysis is the construction of moving averages along time
series of stock prices. We show that they present a practical interest for physicists, and raise new
questions on fundamental ground. Indeed, self-a�ne signals characterized by a de�ned roughness
exponent H can be investigated through moving averages. The density � of crossing points
between two moving averages is shown to be a measure of long-range power-law correlations
in a signal. Finally, we present a speci�c transform with which various structures in a signal,
e.g. trends, cycles, noise, etc. can be investigated in a systematic way. c© 1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

In Physics, theories are mainly motivated by observations. Conversely, experiments
are set up in order to either con�rm or in�rm a theory. In Finance, the situation is quite
di�erent: there is a huge gap between econometry and empirical �nance. Indeed, the
hypothesis of a pure random stock market is almost taken for granted in econometry
while it is de�netely not considered as such in empirical �nance. Econophysicists are
trying to �ll the above gap as Stanley said in his contribution “Can Physics contribute
to Finance?” [1].
The question of the present contribution is quite the opposite: “Can Finance con-

tribute to Physics?”. The answer of this question is undoubtedly YES. We will illustrate
this answer in the particular case of a technical tool, the so-called moving averages.
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Fig. 1. Two moving averages �y 1 and �y 2 of a �nancial data series (Two year evolution of the Apple stock
price) for T1=50 and for T2=200. Two “gold crosses” and a two “death crosses” are denoted (see de�nition
in the main text).

Moving averages are common tools in Technical Analysis [2,3]. By de�nition, a
moving average �y at time t of a signal y is

�y =
1
T

T−1∑

i=0

y(t − i) ; (1)

where T is the time interval over which the average is calculated. It is easy to show
that if the trend of y(t) is positive, the moving average �y will be below y, while
�y¿y when the trend is negative.
Consider two di�erent moving averages �y 1 and �y 2 characterized, respectively, by T1

and T2 intervals such that T2¿T1. These moving averages are illustrated in Fig. 1 for
the speci�c case of a typical �nancial time series, i.e. the evolution of Apple stock price
from January 1st 1987 till December 31th 1996, and for the parameter values T1 = 50
and T2 = 200. The crossings of �y 1 and �y 2 coincide with drastic changes of the trend
of y(t). If y(t) increases for a long period before decreasing rapidly, �y 1 will cross
�y 2 from above. This event is called a “death cross” in empirical �nance [2]. On the
contrary, if �y1 crosses �y 2 from below, the crossing point coincides with an upsurge
of the signal y(t). This event is called a “gold cross”. Chartists often try to “extrapo-
late” the evolution of �y 1 and �y 2 expecting “gold” or “death” crosses. Most computers
on trading places are equiped for performing this kind of analysis and forecasting
[3]. Such curves are automatically displayed on stock charts on most trading soft-
wares. Obviously, the positions of the crossing points are determined by the past his-
tory of the data and not to the future such that the forecasting in empirical �nance
as based on moving average “recipes” are far from a short-=long-range quantitative
forecasting.
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As physicists, we do not endorse these charting methods. Even though moving aver-
ages seem to be poor statistical measures, we will however see in this paper that they
present some very practical interest for physicists and raise new questions in statistical
physics.

2. Crossing points

The arti�cial time series used for the following demonstration within the successive
random addition method originates in d=1 landscape pro�le construction. This method
is also called “midpoint displacement” in the literature [4]. With this algorithm based
on iterations, one generates a sequence of length N = 2n + 1 where n is an iteration
number. At each iteration, one �nds the intermediate positions (midpoints) of couples
of neighboring points and calculates the values of the signal at the midpoints through
some interpolation with respect to neighboring couples. The midpoint values are then
displaced by random numbers chosen from a normal distribution with zero mean and
variance � 2=22nH . The parameter H is the Hurst exponent of the resulting self-a�ne
signal or fractional Brownian motion. For such a (discrete) self-a�ne signal y(t), we
can choose a particular point on the signal and rescale its neighborhood by a factor b
using the roughness (or Hurst [5]) exponent H and de�ning the new signal b−Hy(bt).
For the correct exponent value H , the signal obtained should be indistinguishable from
the original one, i.e. y(t) ∼ b−Hy(bt). The random walk corresponds to H = 1

2 .
We have built several arti�cial time series up to N = 262145 data points (n = 18

iterations) and for various values of H . For each signal, we have considered two
moving averages �y 1 and �y 2 and have calculated the density � of crossing points for
both moving averages �y 1 and �y 2 as a function of T1 and T2. In all checked cases,
� is independent of the size N of the time series. In so doing, the fractal dimension
of the set of crossing points is unity, i.e. the points are homogeneously distributed in
time along �y 1 and �y 2.
Let us continue the analysis of moving averages. When the period T is large, �y(t)

is smooth and “relatively distant” from the signal y(t) while for small T values, �y(t)
rather follows the excursion of the signal. Thus, it is of high interest to observe how �
behaves and whether it has some scaling behavior with respect to the relative di�erence
0¡�T ¡ 1 de�ned as �T = (T2 − T1)=T2.
Fig. 2 presents on linear scales the plot of � as a function of �T for H = 0:3; 0:5

and 0.7. The parameter T2 was �xed to be 80. The �(�T ) curve seems to be fully
symmetric and diverges for �T = 0 and for �T = 1, i.e. for identical �y 1 and �y 2. For
T1 = T2=2, the density of crossing points has a minimum. Moreover, for small �T
values, we �nd that � scales as �TH−1 as well as �∼ (1 −�T )H−1 for �T values
close to 1. We have also found that � scales as T−1

2 . Considering the above behaviors,
we propose the general form for the density of crossing points

� ∼ 1
T2
[(�T )(1−�T )]H−1 : (2)
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Fig. 2. The density � of crossing points as a function of the relative di�erence �T with T2 = 80. Di�erent
values of H are illustrated: H =0:3; 0:5 and 0.7. The case of the Apple stock price for a period of 10 years
(January 1st 1987 till December 31th 1986) is also illustrated. Continuous curves are �ts using Eq. (2).

Two time scales appear in Eq. (2): �T and T2. Thus, the time di�erence �T allows to
hold a parameter for investigating the correlations (H) lying in the signal. The largest
period T2 controls trivially the amplitude of �: the biggest is T2, the smoothest is the
mobile average �y 2 and the least is the number of crossing points. The continuous curves
in Fig. 2 represent a �t of the data using Eq. (2). The agreement of our conjecture (2)
and the data is quite remarkable. It has been shown in Ref. [6] that the computation
of moving averages provides a very accurate measure of the roughness exponent H .
In fact, the measure of H is as accurate as that provided by the detrended uctuation
analysis (DFA) [7].
Two extreme cases can be discussed: (i) �T ≈ 0 and (ii) �T ≈ 1. The former situ-

ation corresponds to T1 = T2 − 1 and the di�erence between both moving averages is
then given by

�y 2 − �y 1 =
1
T2
[y(t − T2 + 1)− �y 1] (3)

such that the existence of a crossing point at time t is determined by the crossing
between the signal at time t − T2 + 1 and the moving average �y 1 ≈ �y 2. The latter
situation corresponds to T1=1, i.e. �y 1=y such that the existence of a crossing point at
time t corresponds to a crossing between y and �y 2 at time t. One understands that the
number of crossing points is roughly the same in both extreme cases. This argument
explains also the symmetry of the density plot. In between both extreme cases, the
situation is more complex and cannot be easily discussed herein.
Fig. 2 presents also the density plot for the Apple stock prices (data of Fig. 1).

Again, a symmetric curve is obtained for �. A �t using Eq. (2) gives an estimation
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Fig. 3. An arti�cial signal taken here to be a sum of two sinusoids having two di�erent frequencies and
arbitrary phases (bottom) and the corresponding spectrum of moving averages (top). The long-term period
T2 has been �xed to 200. The y-axis of the top �gure corresponds to T1. Grey levels are a code for the
distance between both moving averages.

for the Hurst exponent H = 0:46 ± 0:02 in agreement with the values obtained using
DFA H = 0:47± 0:03 (not shown here due to the lack of space).

3. Spectrum of moving averages

It is easy to show that the distance from the signal y to the moving average �y is
proportional to the slope of the signal and proportional to the interval T . One such
moving average is thus extracting some information about the trend of y over T . On
this basis, we have developed a method that uses a larger set of moving averages in
order to visualize di�erent trends on any time scale.
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Fig. 4. Apple shares between 1990 and 1994 (bottom) and the corresponding spectrum of moving averages
(top). The long term period T2 has been �xed to 200. The y-axis of the top �gure corresponds to T1. Grey
levels are a code for the distance between both moving averages.

The basic idea of the “spectrum of moving averages” is to �x the long-term period
T2 to a high value. Then, the short-term period T1 is varied between 1 and T2−1. The
relative distance � = ( �y 1 − �y 2)= �y 1 between both moving averages is then computed
at each time step t and for all T1 values. Fig. 3 presents the resulting pattern together
with the evolution of an arti�cial signal taken here to be a sum of two sinusoids having
two di�erent frequencies and arbitrary phases. T2 is here �xed to be 200. The grey
levels describe the distance �. 1 It should be noticed that the resulting pattern has also
a periodic structure. Two di�erent frequencies can be easily distinguished in distinct
parts of the spectrum as predicted by Eq. (2). Moreover, it should be seen that the
crossing of the moving averages (� = 0) corresponds to inclined curves crossing the

1 Color pictures are available on the web site: http:==www.supras.phys.ulg.ac.be=statphys=statphys.html.
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pattern perpendicular to the t direction as observed in Fig. 3. Thus, the method allows
for visualizing cycles and trends. This is quite useful in �nance but also in physics.
A typical �nancial pattern is the evolution of the Apple stock price between 1990

and 1994. It is illustrated in Fig. 4. A periodic-like structure is suggested to occur in
the spectrum of moving averages. Indeed, an alternance of positive and negative �’s are
found in the spectrum parallel to the time axis. This case is only shown for illustrative
purpose, deeper analysis will be done in a near future but our example (Fig. 4) should
convince the reader about the interest of this visualization technique.

4. Conclusion

We have shown that a poor statistical tool though very commonly used in empirical
�nance can contribute to fundamental physics. Fractional Brownian motions have been
considered. They lead to a non-trivial density of crossing points of moving averages.
This has been used to develop some analysis techniques. A spectral transform has been
shown to provide a useful technique for visualizing the trends and cycles on various
length scales lying in such a signal.
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